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Proofs

1) Proving “for all” statements

2) Showing a “for all statement” is false

3) Proving an “if-then” statement

4) Showing an “if-then’ statement is false

5) Mathematical Induction (another time)

Here are the types of proofs we need to be able to do…



Proofs

∀ stands for  “for all” , “for each” , or  “for every”

∃ stands for  “there exists” , or “there is”

∈ stands for  “in”  ,  “is a member of” , or  “is an element of”

Some symbols



Proofs

• In a “for all” statement, there is a group of objects

• The “for all” statement is claiming that some property is true 

for every object in the group

• Since the group of objects is usually infinite, you don’t want 

to check that the property is true for each object in the group 

one at a time (because you will never finish)

• So you start by selecting an arbitrary member of the group 

without ever mentioning which specific object you selected

• Then you use any known facts about that object until you 

conclude that the object you selected has the property

• Then since you never disclosed which object from the group 

you chose and still concluded that the property is true, the 

property must be true for every object of the group

To prove a “for all” statement ∀ 𝑥 ∈ 𝐺 , 𝑃(𝑥)



Proofs

Ex 1: Prove the following…

a) ∀ 𝑥 ∈ −1,3 ,  −7 ≤ 5𝑥 − 2 ≤ 13

b) ∀ 𝑥 ∈ 7,9 ,  17 ≤ 2𝑥 + 3 ≤ 21



Proofs

• In a “for all” statement, there is a group of objects

• The “for all” statement is claiming that some property is true 

for every object in the group

• Sometimes to prove the property for everything in the group, 

it’s easier to divide the group into smaller groups and prove 

the property is true for each smaller group one at a time

• Divide the work into cases

• Prove the property if the object you selected is from the first 

smaller group

• Proceed the same way you prove any “for all” statement

• Then do this for each of the smaller groups until you have 

finally proved the result for everything in your original group

To prove a “for all” statement with cases



Proofs

Ex 2: Prove the following…

a) ∀ 𝑥 ∈ ℝ ,  𝑥2 ≥ 0

b) For all integers n ,  𝑛2 + 3𝑛 + 1 is odd

c) ∀ 𝑥 ∈ [−1,1] ,  𝑥2 ∈ [0,1]

d) For all integers n ,  𝑛2 + 𝑛 is even



Proofs

Some things to know about integers

• The integers are closed under addition

This means that if you take any 2 integers and add them, 

the result will also be an integer.

• The integers are closed under multiplication

This means that if you take any 2 integers and multiply

them, the result will also be an integer.

Def:  

1. An integer  n  is even if there is another integer  m  such that  

𝑛 = 2𝑚.

2. An integer  n  is odd if there is another integer  m  such that  

𝑛 = 2𝑚 + 1.



Proofs

• The negation of the “for all statement”   ∀ 𝑥 ∈ 𝐺, 𝑃(𝑥)
is the “there exists statement”   ∃ 𝑥 ∈ 𝐺 such that  ~𝑃 𝑥

• To disprove a “for all statement”, you need to find a specific 

object in the group where the statement is not true

To disprove a “for all” statement



Proofs

Ex 3: Disprove the following…

a) ∀ 𝑛 ∈ ℕ ,  2𝑛 + 1 is prime

b) ∀ 𝑛 ∈ ℕ ,  𝑛2 + 3𝑛 + 2 is a multiple of 3



Proofs

• An “if-then” statement is almost the same as a “for all” 

statement

• Whatever comes after the word “if” (P) is trying to describe 

the group of objects the statement is about

• Whatever comes after the word “then” (Q) is the property 

that the statement is claiming is true for all of the objects

• To prove an “if-then” statement, start of by selecting an 

arbitrary object in the group. This time, you will select an 

object that makes  P true

• Then prove that  Q  is true for that object

• Since you never specified what object you selected, the 

statement must be true for all objects in the group

To prove an “if-then” statement If  P  then  Q



Proofs

Ex 4: Prove the following…

a) ∀ 𝑥 ∈ ℝ ,  if  sin 𝑥 = 1 then  cos 𝑥 = 0

b) ∀ 𝑥 ∈ ℝ ,  if  𝑥 > 4 then  3 − 𝑥 < −1



Proofs

• Just like disproving a “for all” statement, you need to find a 

specific object in the group (an object that makes P true) that 

doesn’t make the property (Q) true. 

To disprove an “if-then” statement If  P  then  Q



Proofs

Ex 5: Disprove the following…

a) ∀ 𝑥 ∈ ℝ ,  if  sin 𝑥 = 0 then  cos 𝑥 = 1

b) ∀ 𝑥 ∈ ℝ ,  if  𝑥 < 1 then  𝑥2 < 1


